
GROUND STATION VIRTUALIZATION

James Cutler

Stanford University
jwc@stanford.edu

ABSTRACT

We apply the end-to-end principle, which states that lower layers
of systems should support the widest possible variety of services
and functions, to ground station systems. We isolate core ground
station services and discuss a mechanism for flexible application
level support. Taking into account space system trends such as
adoption of terrestrial Internet protocols, we develop a reference
model that captures core ground services. In an effort to promote
end user flexibility, we organize these services into hierarchical
layers that allow low-level hardware commanding, automation of
contact sessions, and peer-to-peer station cooperation across mul-
tiple space missions. Given this model, we describe our reference
architecture and its implementation based on XML messaging and
standard Internet software systems built with recovery-oriented de-
sign principles. We also discuss a testbed which consists of glob-
ally distributed, university ground station systems.

1. INTRODUCTION

Trends in spacecraft operation are moving towards increased
satellite connectivity that will enable 24x7, end-to-end ac-
cess between users and satellite data. Some even foresee
and hope that communication will soon be eliminated as a
constraint for accessing space-based information[10].

Focusing on similar trends and performance issues, the
terrestrial computing research community has to a small de-
gree reached this goal of eliminating communication as a
constraint. They have increased computing power by 10,000-
fold in the past two decades and provided a ubiquitous net-
working environment, a network of networks, called the In-
ternet.

A strength of Internet systems has been the rigorous use
of the end-to-end design principle which states that lower
layers of systems should support the widest possible variety
of services and functions[32]. In other words, the appli-
cation knows best how to perform its task so lower layers
should provide common, widely-used building blocks. The
simple core Internet protocol has given end users incredible
flexibility to design diverse applications ranging from email,
to file trading, to voice over IP, and to streaming video.

This increase in capability has come at a price though.
As these computing increase in complexity, they become

This work is supported by NASA grant NAG3-2579.

brittle and fragile to operate where downtime can cost hun-
dreds of thousands of dollars per hour[28]. In order to re-
duce the impact of these inevitable failures, research is now
focusing on systems that recovery quickly[16].

Given these trends, the goal of our research is two-fold:
to develop infrastructure to make space-based information
more accessible with a wider impact, and to make this in-
frastructure robust and reliable while being built from unre-
liable components. We are applying end-to-end principles
to ground station systems to highlight core, widely-used ser-
vices and create more flexible architectures for end user ap-
plications. We are also developing recovery-oriented com-
puting principles, where we embrace failure as a fact and
seek to build systems that recovery quickly with minimal
side affects. We are applying these principles to a network
of ground stations that support university satellite missions.
Our work is the partnership of two laboratories at Stanford
University: the Software Infrastructures Group (SWIG) that
has developed technology for robust Internet infrastructure,
and the Space Systems Development Laboratory (SSDL)
that builds small, low-cost research micro and nano satel-
lites.

This paper further describes our efforts to apply these
two principles to ground station systems. First, we describe
the end-to-end principle in more detail and possible appli-
cations to ground stations. Then, we address the needs of
future ground station systems by extending current ground
station architectural reference models. Next, we organize
this model into hierarchical levels based on autonomy. We
then describe important quality attributes of ground station
architectures and how these were implemented in our ref-
erence architecture. We conclude with comments on cost
benefits, future and related work.

2. END-TO-END PRINCIPLES

The trends in space system development have been noted
by many. There is a need for drastic increase in access op-
portunities to space assets[7]. End-to-end data transfers are
needed between space and ground assets as well direct com-
munication between orbiting space assets[11]. Ground sys-
tems must support multiple missions from a growing num-

ber of different institutions. Operations teams are moving
towards higher levels of mission autonomy. Future ground
systems must meet these new trends as well support exist-
ing, legacy space missions.

Concerning these trends, many similarities exist in In-
ternet systems. Efforts are under way to provide perva-
sive computing and ubiquitous networking to enable even
the smallest embedded devices to share information over
the Internet any time and anywhere[36]. Wired and wire-
less networks provide networking for a range of heteroge-
neous computing platforms with applications ranging from
text messaging to video streaming. With some success due
to technologies such as the Internet protocols, Ethernet, and
IEEE 802.11b, terrestrial networks are achieving the removal
of communication as a constraint. Given this success, it’s
important to take note of Internet design principles and their
application to ground systems.

A key enabler to the rapid success and proliferation of
Internet connectivity and services has been the fertile ground
for innovation offered by the Internet. For example, what
has enabled graduate students in their spare time to create
the likes of Yahoo! and Google? Maybe it was just soft
advisors being easy on their students, but some have at-
tributed this fertility to the simplicity of the core Internet
protocol and the flexibility given to the end user to develop
applications[20].

At the heart of this is the end-to-end argument, which
states that the function in question can completely and cor-
rectly be implemented only with the knowledge and help of
the application standing at the end points of the communi-
cation system[32]. Therefore, ”a lower layer of a system
should support the widest possible variety of services and
functions, so as to permit applications that cannot be antici-
pated”. Building complexity into a network often optimizes
it for that particular application to the detriment of other un-
foreseen applications[31].

There are numerous example applications of this prin-
ciple in the computer systems community. Consider the
paradigm shift in computer architectures that took place in
the eighties where complex instruction set computers with
high level hardware support for programming languages were
replaced with simpler architectures, called reduced instruc-
tion set computers (RISC). RISC systems provided basic in-
struction set primitives and reported two to fives times better
performance than complex architectures on the same sili-
con wafer technology. These reduced instructions enabled
compilers to optimize the architecture for multiple program-
ming languages rather than just the specific one supported
by hardware. RISC processors now dominate the micropro-
cessor market[29].

Consider the flexibility of the Secure Socket Layer (SSL)
[17]. The SSL protocol enables client/server authentica-
tion and message encryption for web applications. Rather

than specify apriori a specific encryption technology, SSL
supports client/server negotiation of available cypher suites.
They have standardized a protocol to enable flexibility in
choice of encryption technology. Thus, legacy as well as
future technologies are supported.

Again consider the flexibility of the Hypertext Transfer
Protocol (HTTP). The original CERN developers created it
to simply share documents over the network[18]. Appli-
cation developers are now using HTTP to trade stocks and
facilitate financial transactions, perform remote method in-
vocation using technologies such as SOAP[35], and even
create tunnels that run SSH over HTTP.

In contrast, ground stations systems have typically been
complex and optimized for single missions rather than mul-
tiple missions. Some of this is due to the inherent com-
plexity of space to ground communication. However, con-
sider that these stations are tackling low level physical link
parameters as well as application level processing such as
telemetry parsing and archiving. The difficulties in cross
mission and agency standardization efforts have manifested
themselves as complexity in the ground station. It’s not un-
common for missions to supply equipment at station instal-
lations [38, 37].

Given the success of the Internet as described above
and the complexity of current ground stations, can we ap-
ply the end-to-end argument to ground systems and provide
the same fertile ground for innovation in ground system de-
velopment and the same levels of interconnectivity? Can
we standardize basic ground station services and provide a
standard mechanism for flexible application level support?
We begin to tackle these questions in this paper.

3. CONTEXT

The fundamental purpose of a ground station (GS) is to en-
able communication between ground users and space assets.
In addition to the RF equipment needed for communication,
ground stations traditionally have a suite of support systems
for mission-specific data handling needs such as demulti-
plexing of data streams, encryption functions, data com-
pression, time tagging, data storage, data quality measure-
ments, and spacecraft ranging. This has led to challenges
in multi-mission support due to highly specialized mission-
specific equipment and a lack of flexibility for the end users
[37].

With the adoption of terrestrial networking standards
for end-to-end communication between space and ground
systems, the core function of a ground station is simpli-
fying and becoming similar to that of a standard Internet
router. This adoption is evident through recent space system
work [22][24][21]. Therefore, the fundamental purpose of
a ground station is evolving to become more simple; it is
to bridge space and terrestrial networks and route packets

appropriately.
Despite these similarities with Internet routers, there are

some basic differences between them and ground stations.
These differences must be addressed when architecting fu-
ture ground stations.

Due to the tracking constraints and narrow beam widths
of the RF links 1, communication channels tend to be circuit
switched; a ground station is scheduled for a particular time
interval to exclusively maintain a communication channel
with a single satellite. The bidirectional pointing require-
ments for high speed communicational channels and slow
antenna slew rates prevent rapid multiplexing between mul-
tiple satellites. In contrast, the physical networks for routers
are fixed and don’t require reconfiguration for each packet
stream. Therefore, while ground station resources remain
scarce, this circuit-switched induced bottleneck requires ef-
ficient scheduling to enable multiple mission support.

Ground stations often support large downlink missions
(hundreds of megabits and soon to be gigabits per second)
at the edge of terrestrial networks were bandwidth is lim-
ited. Data must be stored and forwarded at a later time,
sometimes by sneakernet[33], and this potentially requires
application level knowledge. In contrast, routers tend to be
closer to the Internet core where bandwidth is high. The
packet life time in router is near zero, where they are quickly
forwarded or dropped.

Internet routers contain no knowledge of the applica-
tion. However, ground stations supporting legacy missions
often have large amounts of application knowledge. For
example, they sometimes demultiplex data streams and tag
data with accurate time stamps. In the near future, ground
stations must flexibly support these legacy missions. How-
ever, for the example given, this high level of application
support will diminish as missions begin using ground com-
patible packet protocols and space-based clocks (such as
those based on GPS).

The complexity of ground stations is currently signifi-
cantly greater than Internet routers. In fact, ground stations
usually contain a router in addition to all the equipment
needed to support ground to space communication links.
This increased complexity lowers the mean time to failure
and potentially increases the mean time to repair. Hard-
ware repairs are manually intensive and regular inspections
are needed[14]. To bound costs, architectures must manage
this complexity by decreasing failure detection and recovery
times.

Also, ground stations require real time (or near real time)
control of resources to maintain satellite contact channels.
Telemetry feedback is used to adjust antenna pointing an-

1Beams are narrowing even more has bit rates increase, especially when
optical links become common place. Phased array antenna technology may
soon allow multiple RF links to be maintained through a single antenna
system, but stations are likely to remain circuited switched.

gles and receiver frequencies to maximize received signal
strength. In contrast, routers simply manage queues with-
out the complexity of hardware feedback control.

Any application of successful Internet design principles
must take these differences into accounts. Given the rising
software presence in ground systems[14, 38] and the dis-
tributed nature of a ground station network, the similarities
are large enough to explore the cross fertilization of princi-
ples.

4. HIERARCHICAL REFERENCE MODEL

We begin with an attempt to capture core ground station
services, ones that are shared across multiple missions, and
separate out mission specific services. We divide station
services along autonomy lines into three hierarchical lay-
ers which permit low level hardware control, contact au-
tomation for a single station, and peer cooperation among
ground stations to enhance space to ground links. We layer
these services to hide information[25]; the encapsulation of
module specific functions to hide device heterogeneity and
provide common, highly utilized virtualized services. Our
eventual goal is to develop an architecture that offers core
services and standardized mechanisms for flexible applica-
tion level services. 2

The virtual hardware level captures the fundamental ca-
pabilities of low-level ground station components and en-
ables generic commanding of heterogeneous hardware. This
is a master/slave control paradigm where the ground station
exposes lower level control interfaces for all hardware. At
the heart of the ground station is the dedicated hardware
to support ground to space communication links, which we
call hardware pipelines.3. Pipelines convert space radio
transmissions into digital bits that can be placed on digital
networks (and vice versa). These consist of hardware asso-
ciated with antennas, low noise receive amplifiers (LNA),
output power amplifiers, radios, modems, and multiplexing
hardware for flexible configurations. Pipelines also perform
ranging functions to measure satellite distances and posi-
tions. Others have provided physical views at this layer[37,
38, 14].

The session level captures typical automation tasks and
services of a single ground station installation. Users de-
fine a session, which tasks these automation services over

2On an aside, it’s interesting to note many of the functional similari-
ties between ground stations and satellites. Except for the payloads, satel-
lites have similar functions. There is some interesting synergy between the
two. For example, our Stanford-built satellites and ground stations both run
Linux on Intel-based processors. We even use some of the same embedded
technology as well to control power distribution and signal multiplexing.
Also, with the rise of formation flying missions, and if ground stations sup-
port some level of application level services, the stations appears to be just
another node in the formation, a ground node.

3These have been called ”chains” and ”strings” in [38]. We use pipeline
to keep our work consistent.

HW

Pipeline

Data

Processing

Space
 Users

Health

Monitor
 Estimator

Station

Controller

State

Storage
 Scheduler

Access

Server

Figure 1. Component view at the session level.

a specific time interval to maintain communication chan-
nels. A communication channel definition includes one or
more pipelines (transmit, receive, or transceive) and associ-
ated data processing services. Session level services employ
the virtual hardware level primitives to control lower level
ground station resources. A functional view of a ground
station at the session level is found in figure 1.

The scheduling service accepts reservations for the use
of ground station systems. Ground requests are processed
through terrestrial networks. Space requests are received
through low resource utilization pipelines (such as simple
omnidirectional antennas). Until stations are no longer a
scarce resource, scheduling will be critical function. Re-
source availability and user access priority are taken into
account during the scheduling of sessions.

The station controller automates execution of satellite
contact sessions. It monitors scheduled contact session re-
quests, it configures ground station hardware to support the
requested communication channels, and enables requested
automation and data processing services. It performs real
time control of station hardware to maintain and optimize
communication channels during a satellite pass. Antennas
are tracked, radios tuned, and link parameters (such as FEC
levels and bit rates) adjusted to account for variable bit error
rates. The controller also manages health monitor output
and recovers from failures automatically or alerts on non-
recoverable errors.

The station is monitored for proper operation by health
monitor systems. These consist of sensors, both software
and hardware, logging resources for storing telemetry, and
health assessment functions for detecting failures and per-
formance degradations.

The estimator determines the target satellite position,
antenna pointing angles, and Doppler correction factors. Pos-
sible sources for this information include pipeline ranging
systems, satellite provided GPS data, or calculated values
from orbital element sets.

The state management service stores session descrip-
tions and their schedules, session products which contain
GS telemetry and communication channel bit logs, a cache
of satellite configuration information (pipeline frequencies,
data processing needs, etc.), user access information, etc.

The remote access server authenticates remote users and

Users

TX/RX

Pipeline

Station B

RX

Pipeline

Station A

TX/RX

Pipeline

Station C

Region 1
 Region 2

Motion

Registration
 VGS

Service

Figure 2. Here is a component view at the network level.
In region 1, station A and B cooperate on maintaining the
contact. Station A’s transmit power amplifier has failed and
B has taken over transmit responsibilities. As the satellite
moves into region 2, station B takes over the receive func-
tions to provide a seamless transition. Station B and C then
coordinate to provide an optimized virtual station, where B
is the primary receiver because of its higher gain antennas
and better terrestrial network access and C continues with
transmitting until the satellite is out of range.

provides secure, encrypted ground station control. It con-
trols access to the scheduling services, the data processing
services, and also enables access to communication chan-
nels and low level virtual hardware commanding.

Processing bits on the ground side of the pipeline is han-
dled by the data processing services. Networking and com-
munication services include bit synchronization, forward
error correction (FEC), and link and network level proto-
col management. At the application level, there are endless
possibilities of data services, some of which have been men-
tioned above. In our architectural development, we hope to
separate out these services and replace them with a mecha-
nism to allow missions to run custom services without the
ground station having explicit knowledge of them.

The network level captures the services of a ground sta-
tion network.4 These networks provided increased capabil-
ities over single ground station installations and are feder-
ated from stations under different administrative domains
[12]. Link intermittency is reduced and temporal cover-
age is increased as globally distributed ground stations with

4In the past we have called this the ”mission level” but now feel ”net-
work” is more appropriate. In the future a mission level may be added to
include services common to satellite operations. This broadens the scope
of this work from ground stations to ground systems.

overlapping contact windows handoff satellite contact ses-
sion. Local clustering 5 of ground station teams enables
static and dynamic optimization of a ground station system
through composition of a virtual ground station, a ground
station composed of components and services distributed
across multiple installations. See figure 2 for views of these
networks.

The registry service accepts registrations from ground
stations offering their capabilities to the network. This reg-
istry service enables users to locate available ground station
resources. Full scheduling authority rests with the ground
stations.

The virtual ground station service composes distributed
ground stations and presents a virtual single interface to sta-
tion end users. This service enables peer ground station co-
operation and masks failovers and handoffs without explicit
user knowledge. Autonomy can be handled centrally with
stations acting as slaves or distributed among them where
they act as peers.

These three layers capture the core services of a ground
station network and present different interfaces to users based
on autonomy levels. At the virtual hardware level, users
have full control of station hardware. At the session level,
a station is tasked to automatically track a satellite and pro-
vide network data connections between ground and space
assets. At the network level, teams of stations are tasked to
maintain extended contacts, to optimize links, and provide
redundancy in the presence of failures.

5. SYSTEM QUALITY ATTRIBUTES

We have already discussed the application of the end-to-
end argument in the context of ground station architectures.
This has lead us to seek simplification in core ground station
resources in an effort to promote flexibility and interoper-
ability in ground station systems. Eventually, core ground
station services will be standardized along with mechanisms
for flexible, application-specific services to be run at ground
stations. These are two of the three quality attributes we fo-
cusing on.

In the past, ground stations have been highly optimized
for performance; they have been stove-piped solutions to
meet the needs of a particular mission. Similar, computer
system researchers have focused on performance, increas-
ing computing power 10,000 fold in the last twenty years[16].
However, this has resulted in large distributed computing
systems that tend to be brittle and difficult to repair. Do
ground stations suffer from the same complexity-induced
difficulties?

It has been noted that the drive for lower-cost ground
stations is reducing the redundancy in the these systems,

5Local refers to stations simultaneously within the footprint of a satel-
lite and depends on satellite altitude.

thereby increasing single points of failure and failure rates[5].
Hardware failures tend to dominate ground station failures,
and the rise of software intensive components will likely
lead to more software failures as well[14, 38]. So, it ap-
pears that ground stations are also suffering from reliability
issues as they increase their performance and complexity.

Given this reliability issue, a primary attribute of our
system architecture is availability. Our method is based
upon recovery-oriented computing principles (ROC) [27].
We assume failures due to people, hardware, and software
are facts that must be coped with over time. Despite de-
creases in failures rates, they still occur as our systems be-
come more complex. ROC advocates increased design em-
phasis on recovery rather than exclusively fault avoidance.
In some cases, systems that recovery quickly are more valu-
able then systems that don’t fail often (especially if they take
long to recover)[15].

With the increasing lines of code in ground stations,
software failures and errors will increase. We have recently
applied one of the ROC techniques, recursive restartability
[9], with some success to ground stations systems[8]. Con-
cerning hardware failures, we assume most ground stations
have little redundancy (as noted by[5]). Thus, we are us-
ing redundancy in the network of ground stations to recover
from single point hardware failures[12].

Tradeoffs are a necessary function of architectural de-
velopment. Traditionally, space systems have been opti-
mized for performance while trading off flexibility and in-
teroperability. However, the rising total cost of ownership
of space systems is forcing us to re-evaluate these two ne-
glected qualities. Also, requirements for lower cost systems
is resulting in degrading system reliability. Therefore, we
are shifting our focus to develop new architectures and sys-
tems that meet these challenges for robust systems that are
flexible enough to interoperate with multiple missions.

6. MERCURY REFERENCE ARCHITECTURE

Given this hierarchical reference model, we have developed
a ground station architecture and a reference implementa-
tion, called Mercury, to support university satellite missions.
The latest version of our Mercury system, version 1.2.0,
combines a three-tiered web architecture (Linux, Apache,
MySQL, and PHP) and a suite of loosely coupled control
software components (written primarily in Java) to imple-
ment the virtual hardware and session levels of the reference
model. Development of the network level is underway.

We are partnering with universities around the world
to build a global ground station network that supports uni-
versity satellite missions. These satellite missions tend to
be experimental research satellites, testing new engineering
technologies in the space environment or performing ba-
sic science missions[13, 34]. They have limited financial

Master Group
Tx/Rx Pipeline
 Session Group

GS

Manager

SQL

DB

HTTPS

GUI

Session

Controller

Production

Unit

Data Server

Estimator

Session Message Server
Radio Driver

Antenna Driver

Transceiver

Internet

Power

Driver

Master Message Server

Modem

Ground Station Installation

Process

Manager

Access

Server

Client

Modem Driver

Figure 3. Software component view of the Mercury system with only several pipeline hardware components. Computers and other
hardware are not shown. Internet security of the system will be discussed in a future work.

resources and are often built from non-space rated, COTS
components. Though their communication systems tend
to be low-rate (less than 38.4Kbps) due to financial con-
straints, these missions still are fertile ground for innova-
tion and experimentation in space operations. For example,
QuakeSat, a small nanosatellite built by students at Stan-
ford, will be running end-to-end Internet protocols for their
primary command and control[23].

At the heart of the Mercury is an XML messaging sys-
tem for distributing command and control messages. We
have captured the hierarchical reference model in the Ground
Station Markup Language (GSML)[3]. GSML enables hu-
man and software agent-based control of ground station re-
sources and serves as a testbed for exploring generic com-
manding of heterogeneous ground station components. The
control software components are loosely coupled through
a centralized messaging server. The server supports com-
munication links such as TCP/IP, UDP/IP, and RS-232 se-
rial links. We have developed a specification file that cap-
tures the GSML primitives. We compile this to automati-
cally generate code that hides low level communication is-
sues (such as TCP port opening and closing), and provides
a GSML application programmer interface (API) to code
writers. Many of our messaging principles are described
in[30].

Figure 3 shows a software component view of the Mer-
cury architecture. The master group of software compo-
nents manages station configuration and scheduling of con-
tact sessions. It also contains any hardware drivers that are
independent of sessions or span multiple sessions. Stable
storage of configuration and scheduling data is in the SQL
database. Scheduling of ground station resources is through
an HTML interface for human users and a GSML-enabled
access server for software agents. The ground station man-
ager monitors scheduled sessions and enables execution of
contacts at the appropriate time. The process manager mon-

CPU Hardware

Host OS

Virtual Machine Monitor

Guest

OS

App

Guest

OS

App

Guest

OS

App

...

Figure 4. A virtual machine systems with multiple guest op-
erating systems running on a single host.

itors all software components in the ground station and at-
tempts recovery on failures.

The session group of software components provides com-
mand and control of ground station resources to maintain
communication channels. Loosely coupled hardware drivers
are controlled by the session controller. The estimator pro-
vides pointing angles and frequencies for the passing satel-
lite. For non IP packets, the data server interfaces to the
modems and encapsulates data in IP packets for transporta-
tion across terrestrial networks (we currently support AX.25
and IP). The production unit logs GS telemetry as well as
bytes transmitted to and received from the pipelines. These
are archived in the database.

We have discussed virtualization of ground station spe-
cific resources. We are also taking advantage of the vir-
tualization of computing platforms. All ground station pro-
cesses run inside of virtual machines (VM). We use VMware
[1] to run multiple guest operating systems on a single host
operating system and platform, see figure 4. This frees our
computing resources (operating systems and the application
software) from specific hardware platforms. A VM is mi-
gratable to new or different hardware as easily as files are
copied over a network. The benefits of this are discussed
later.

We are also using VM’s to create a flexible for solu-
tion for GS users to run application specific code at the
ground station. We enable users to upload a VM (contain-
ing their application specific software). The station simply
knows how to execute a VM, and is ignorant of all appli-
cation specific knowledge. VM’s provide an excellent se-
curity sandbox and are resource limited (CPU and network)
to prevent malicious or erroneous execution from adversely
affecting GS systems. VM’s are selected during contact ses-
sion scheduling and can access all network accessible sys-
tems in the GS (if given proper permission). This enables
them to perform custom antenna tracking, application spe-
cific data demultiplexing, and any other application process
runnable from a VM. The GS is now free of application
specific knowledge but still enables users to run application
specific services.

7. COST BENEFIT ANALYSIS

The benefits of ROC principles as applied to terrestrial sys-
tems on the total cost of ownership (TCO) have been dis-
cussed where the cost of down time ranges from $14K/hour
for ATM services to $2.6M/hour for credit card authoriza-
tion services[28, 27, 26]. On a comparable space network
system, the cost of TDRSS down time ranges from $0.54K
per hour up to $11K per hour[4]. Since ROC attempts to
reduce recovery time, this will have a positive affect on the
cost of downtime.

Coding and integration time have been reduced with the
use of the GSML API. New hardware components require
only GSML software drivers to be written. Any changes to
low level GSML specifics are masked by the autogenerated
communication modules that mask GSML specifics from
application writers. This simplifies the training time of new
developers as well as the effects of changing the underlying
communication structures. These time reductions result in
a lowering of cost.

The Mercury system is an open source project with de-
velopers from universities around the world. The cost of
code development and maintenance is shared across mul-
tiple universities. We benefit from the diverse background
and experiences of multiple developers that lends strength
and depth to the Mercury architecture. Most non Mercury
specific code is also open-source (such as Linux, Apache,
MySQL, and PHP). The only proprietary software we pur-
chase is the virtual machine system from VMware.

The use of virtual machines has excellent possibilities in
reducing TCO. To a host operating system (OS), a guest OS
looks like several large files (usually multiple gigabytes).
Migrating a VM is as simple as copying these files, which
takes no more than several minutes on modern local area
networks. Backups and restorations of entire systems are
simple and straight forward. They can be run as hot, warm,

and cold spares to facilitate rapid recovery of failed software
systems. Recovery then is faster and the cost total cost of
downtime reduced.

VM’s also facilitate computing infrastructure upgrades.
VM’s can be migrated to new host systems without all the
reinstallation issues of installing a system from scratch. Hard-
ware upgrades consist of installing the hardware, installing
the virtual machine monitor (which is significantly less work
then a full application system install), and copying over the
virtual machine.

We also use VM’s to distribute our Mercury system soft-
ware. In addition to the traditional source code and instal-
lation documents, we have entire VM’s that can be down-
loaded that contain our Mercury system already installed.
The use of VM’s has reduced the install time from hours
and days for experts and novices, respectively, to less than
an hour for any user.

8. RELATED WORK

Others have noted space mission trends and are working
on flexible, network-centric ground station systems. The
work by the Consultative Committee for Space Data Sys-
tems (CCSDS) is an international efforts to standardize space
systems at all levels. Concerning ground stations specifi-
cally, they have developed the Space Link Extension (SLE)
[2]. SLE is comparable to the session level but is CCSDS
specific. It doesn’t provide generic data processing ser-
vices, only CCSDS protocols. SLE should be extended
to broaden the lower level interfaces in order to promote
development of space applications (such as IP-based ser-
vices). CORBA interfaces have been described to mask
device heterogeneity[6]. This is an implementation of the
virtual hardware level.

9. CONCLUSIONS

We have discussed the application of the end-to-end princi-
ple to ground station systems. It states that lower layers of
systems should support the widest possible variety of ser-
vices and functions. We have applied this to ground stations
to derive a core set of services that are used across multi-
ple missions while separating out mission specific services.
We have developed a hierarchical model that describes these
services and layers them based on autonomy levels.

Given this model, we briefly described our reference
architecture and open source implementation, called Mer-
cury. We are currently deploying it at universities around the
world to support university satellite research missions. We
are expecting to support 10-20 satellite missions launched
each year with the first six launching in the summer of 2003.
We have also described our use of virtual machines in the

ground station. They are a primary tool in enabling flex-
ible application level support of a ground station without
it knowing any application level semantics. These systems
are lowering the barriers to access space and providing ba-
sic building blocks for new operational paradigms to be ex-
plored.

At the previous RCSGSO conference in 2001, R. Hold-
away asked, ”What might be done to expedite the realiza-
tion of reducing the costs of ground systems[19]?” We feel
the community is on the verge of a rich time of innovation.
Given the explosion of Internet technologies and their ap-
plication to space, this growing involvement of universities
(who have significant financial constraints) may spark inno-
vation and development to drastically increase the connec-
tivity to space and provide ground systems at reduced costs.

10. REFERENCES

[1] VMware. http://www.vmware.com.

[2] Space link extension executive summary, September
2001. CCSDS 910.0-Y-0.1, Draft Yellow Book.

[3] The ground station markup language (GSML). Draft
at http://mercury.sourceforge.net/
gsml/, July 2003.

[4] Space network overview, June 2003. http://
nmsp.gsfc.nasa.gov/range/rstim.pdf.

[5] Peter M. Allan. Developing a co-operative ground sta-
tion capability. In 2nd UN/IAA Workshop on Small
Satellites at the Service of Developing Countries.
IAA-01-IAA.11.3.06, October 2001.

[6] S. Bernier and M. Barbeau. A virtual ground station
based on distributed components for satellite commu-
nications. In Proceedings of 15th Annual AIAA/USU
Conference on Small Satellites, Logan, Utah, August
2001.

[7] Kul Bhasin and Jeffrey L. Hayden. Space Internet
architectures and technologies for NASA enterprises.
In Proceedings of IEEE Aerospace Conference, pages
931–941, Big Sky, Montana, 2001.

[8] George Candea, James Cutler, and Armando Fox. Im-
proving availability with recursive micro-reboots: A
soft-state system case study. In To appear in Perfor-
mance Evaluation Journal, Summer 2003.

[9] George Candea and Armando Fox. Recursive restarta-
bility: Turning the reboot sledgehammer into a
scalpel. In Proc. 8th Workshop on Hot Topics in Op-
erating Systems, pages 110–115, Elmau/Oberbayern,
Germany, May 2001.

[10] Maj. Gen. Craig R. Cooning. Ground systems -
providing effects to the warfighter. Presented at

the Ground Systems Architecture Workshop (GSAW),
Mar 2003.

[11] Ed Criscuolo, Keith Hogie, , and Ron Parise. Trans-
port protocols and applications for Internet use in
space. In Proceedings of IEEE Aerospace Conference,
pages 951–962, Big Sky, Montana, 2001.

[12] James Cutler, Peder Linder, and Armando Fox. A
federated ground station network. In Proceedings of
SpaceOps 2002, Houston, TX, October 2002. AIAA.

[13] James W. Cutler and Gregory Hutchins. Opal:
Smaller, simpler, luckier. In Proc. AIAA Small Satel-
lite Conference, Logan, Utah, September 2000.

[14] Donald C. Elmore and Terry R. Hurd. Fault detection
and fault isolation in the ground station. In Proceed-
ings of MILCOM, Volume 3, November 1997.

[15] Armando Fox and David Patterson. When does fast
recovery trump high reliability? In Proceedings of the
2nd Workshop on Evaluating and Architecting System
Dependability (EASY), San Jose, CA, October 2002.
IEEE Computer Society.

[16] Armando Fox and David Patterson. Computer Heal
Thyself. Scientific American, pages 54–61, June 2003.

[17] Alan Freier, Philip Karlton, and Paul C. Kocher. SSL
version 3.0, March 1996. Internet Draft, available
at http://home.netscape.com/eng/ssl3/
ssl-toc.html.

[18] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1. Internet RFC 2616, June 1999.

[19] R. Holdaway. How we got to be at JHU/APL: Reduc-
ing the costs of spacecraft ground stations and opera-
tions. In Proceedings of the Fourth International Sym-
posium on Reducing the Cost of Spacecraft Ground
Systems and Operations, Laurel, MD, 2001.

[20] David S. Isenberg. The dawn of the stupid network.
In ACM Networker 2.1, pages 24–31, February/March
1998.

[21] David Israel. NASA TDRSS S-Band IP service devel-
opments. Presented at the Space Internet Workshop,
June 2003.

[22] David Israel. STS-107 mission end-to-end IP space
communication results. Presented at the Space Inter-
net Workshop, June 2003.

[23] Mathew Long, Allen Lorenz, Greg Rodgers, Eric
Tapio, Glenn Tran, Keoki Jackson, Robert Twiggs,
and Thomas Bleier. A cubesat derived design for a
unique academic research mission in earthquake sig-
nature detection. In Proc. AIAA Small Satellite Con-
ference, Logan, Utah, 2002.

[24] Will Marchant. Status of the CHIPS mission. Pre-
sented at the Space Internet Workshop, June 2003.

[25] D. Parnas. On the criteria for decomposing sys-
tems into modules. In Proceedings of the 1971 IFIP
Congress, North Holland, 1971.

[26] David Patterson. Availability and maintainability
greater than performance: New focus for a new cen-
tury. USENIX Conference on File and Storage Tech-
nologies (FAST ’02), January 2002. Keynote Address.

[27] David Patterson, Aaron Brown, Pete Broadwell,
George Candea, Mike Chen, James Cutler, Patricia
Enriquez, Armando Fox, Emre Kiciman, Matthew
Merzbacher, David Oppenheimer, Naveen Sastry,
William Tetzlaff, and Noah Treuhaft. Recovery ori-
ented computing (ROC): Motivation, definition, tech-
niques, and case studies. Technical Report UCB/CSD-
02-1175, UC Berkeley, Berkeley, CA, March 2002.

[28] David A. Patterson. A simple way to estimate the cost
of downtime. In Proceedings of LISA ’02: Sixteenth
Systems Administration Conference, pages 185–188,
Berkeley, CA, 2002.

[29] David A. Patterson and John L. Hennesey. Computer
Architecture A Quantitative Approach. Morgan Kauf-
mann Publishers, Inc., San Francisco, California, 2nd
edition, 1996.

[30] Shankar R. Ponnekanti, Brad Johanson, Emre Kici-
man, and Armando Fox. Portability, extensibility and
robustness in iROS. In Proceedings of IEEE Interna-
tional Conference on Pervasive Computing and Com-
munications (Percom 2003), Dallas, TX, March 2003.

[31] D. Reed, J. Saltzer, and D. Clark. Active networking
and end-to-end arguments. IEEE Network, 12(3):66–
71, May/June 1998.

[32] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end
arguments in system design. ACM Transactions on
Computer Systems, 2(4):277–288, November 1984.

[33] Trevor Sorensen, Dean Bakeris, and Richard Hieb.
The design of a commercial spacecraft control net-
work. In Proceedings of Space Ops, Tokyo, Japan,
June 1998.

[34] Michael A. Swartwout and Robert J. Twiggs. SAP-
PHIRE - Stanford’s first amateur satellite. In Proceed-
ings of the 1998 AMSAT-NA Symposium, Vicksberg,
MI, October 1998.

[35] W3C. SOAP specification. http://www.w3.
org/TR/SOAP/.

[36] Mark Weiser. Some computer science issues in ubiq-
uitous computing. Communications of the ACM,
36(7):75–85, July 1993.

[37] James R. Wertz and Wiley J. Larson, editors. Space
Mission Analysis and Design. Microcosm Press, El
Segundo, California, 3rd edition, 1999.

[38] David Zillig and Ted Benjamin. Advanced ground sta-
tion architecture. In Proceedings of SpaceOps, Green-
belt, Maryland, November 1994.

